Qué puede acelerar la hidrólisis
Un polímero es una sustancia compuesta por macromoléculas[2]. Una macromolécula es una molécula de alta masa molecular relativa, cuya estructura comprende esencialmente la repetición múltiple de unidades derivadas, real o conceptualmente, de moléculas de baja masa molecular relativa[3].
es una sustancia o material formado por moléculas muy grandes, o macromoléculas, compuestas por muchas subunidades repetidas[6]. Debido a su amplio espectro de propiedades,[7] tanto los polímeros sintéticos como los naturales desempeñan papeles esenciales y ubicuos en la vida cotidiana[8] Los polímeros van desde los conocidos plásticos sintéticos, como el poliestireno, hasta los biopolímeros naturales, como el ADN y las proteínas, que son fundamentales para la estructura y la función biológicas. Los polímeros, tanto naturales como sintéticos, se crean mediante la polimerización de muchas moléculas pequeñas, conocidas como monómeros. Su masa molecular consecuentemente grande, en relación con los compuestos de moléculas pequeñas, produce unas propiedades físicas únicas que incluyen dureza, alta elasticidad, viscoelasticidad y una tendencia a formar estructuras amorfas y semicristalinas en lugar de cristales.
Todos los polímeros están formados por
La hidrólisis es la reacción opuesta a la condensación porque, durante la hidrólisis, los polímeros se descomponen en monómeros, mientras que durante la condensación los monómeros se unen para formar polímeros. Los enlaces covalentes se rompen durante la hidrólisis y se crean durante la condensación.
Durante la condensación de los nucleótidos, se forman los ácidos nucleicos ADN y ARN. Son cruciales para toda la materia viva, ya que transportan el material genético. Sin la condensación, esta función vital no sería posible.
La condensación de los ácidos grasos y el glicerol es importante porque se forman lípidos. Los lípidos son moléculas esenciales para el almacenamiento de energía, bloques de construcción de las membranas celulares y proveedores de aislamiento y protección. Sin la condensación, estas funciones vitales no serían posibles.
El objetivo de la reacción de hidrólisis es la descomposición de los polímeros en monómeros o pequeñas moléculas. Esto es importante para el funcionamiento normal de las células, ya que absorben pequeñas moléculas que les proporcionan energía.
¿Cuál es otro nombre para un polímero que es una molécula orgánica
Como has aprendido, las macromoléculas biológicas son grandes moléculas, necesarias para la vida, que se construyen a partir de moléculas orgánicas más pequeñas. Hay cuatro clases principales de macromoléculas biológicas (hidratos de carbono, lípidos, proteínas y ácidos nucleicos). Cada una de ellas es un importante componente de la célula y desempeña una amplia gama de funciones. Combinadas, estas moléculas constituyen la mayor parte de la masa seca de una célula (recordemos que el agua constituye la mayor parte de su masa completa). Las macromoléculas biológicas son orgánicas, es decir, contienen carbono. Además, pueden contener hidrógeno, oxígeno, nitrógeno y otros elementos menores.
La mayoría de las macromoléculas están formadas por subunidades individuales, o bloques de construcción, llamados monómeros. Los monómeros se combinan entre sí mediante enlaces covalentes para formar moléculas más grandes conocidas como polímeros. Al hacerlo, los monómeros liberan moléculas de agua como subproductos. Este tipo de reacción es la síntesis por deshidratación, que significa “juntar perdiendo agua”.
En una reacción de síntesis de deshidratación ((Figura)), el hidrógeno de un monómero se combina con el grupo hidroxilo de otro monómero, liberando una molécula de agua. Al mismo tiempo, los monómeros comparten electrones y forman enlaces covalentes. A medida que se unen más monómeros, esta cadena de monómeros repetitivos forma un polímero. Los distintos tipos de monómeros pueden combinarse en muchas configuraciones, dando lugar a un grupo diverso de macromoléculas. Incluso un mismo tipo de monómero puede combinarse de diversas maneras para formar varios polímeros diferentes. Por ejemplo, los monómeros de glucosa son los componentes del almidón, el glucógeno y la celulosa.
¿Qué reacción descompone los polímeros?
“Lo siento en mis dedos, lo siento en mis pies, el amor que me rodea”. Esta podría ser la letra de una popular canción navideña de la película Love Actually, pero también podría ser una canción sobre las macromoléculas, las grandes moléculas que nos rodean. Desde las uñas y el pelo hasta las puntas de goma de los auriculares, están por todas partes. Tú estás hecho de macromoléculas, al igual que los árboles y las botellas de agua de plástico. Las llamamos polímeros, largos tramos de moléculas idénticas con una serie de propiedades útiles, como la dureza o la elasticidad. Y resulta que no podemos vivir sin ellos. Los polímeros son naturales -el ADN de nuestras células es un polímero- y sintéticos (hechos por el hombre), como el plástico, el Silly Putty y la espuma de poliestireno. Este artículo desvela los misterios de los polímeros y explica cómo estos fascinantes materiales han dado forma a la vida tal y como la conocemos.
La palabra científica para designar una molécula muy grande es macromolécula, porque “macro” significa grande. Los polímeros son materiales macromoleculares que afectan a casi todos los aspectos de nuestra vida. Lo más probable es que la mayoría de nosotros haya estado en contacto con al menos un producto que contenga polímeros -desde botellas de agua hasta aparatos o neumáticos- en los últimos 5 minutos. De hecho, el propio término polímero nos da una pista sobre cómo se diseñan estos materiales. En griego, “poly” significa muchos, y “mer” significa parte. Para entenderlo mejor, imagine que está haciendo un collar de cuentas. Cada cuenta representa un átomo. Puedes ensartar cuentas individuales en una fila. O puede hacer grupos de un tipo de cuentas con otras, y luego ensartarlas. En un polímero, las cuentas individuales se llaman monómeros. Una vez unidos, los monómeros forman el polímero. La figura 1 muestra un diagrama simplificado de cómo los monómeros construyen diferentes tipos de polímeros.