Diagrama de flujo de la clasificación de los polímeros
La forma más habitual de clasificar los polímeros es separarlos en tres grupos: termoplásticos, termoestables y elastómeros. Los termoplásticos pueden dividirse en dos tipos: los que son cristalinos y los que son amorfos.
Las moléculas de un termoplástico se mantienen unidas por fuerzas intermoleculares relativamente débiles, de modo que el material se ablanda cuando se expone al calor y vuelve a su estado original cuando se enfría. Los polímeros termoplásticos pueden ablandarse repetidamente por calentamiento y solidificarse por enfriamiento, un proceso similar al de la fusión y el enfriamiento repetidos de los metales. La mayoría de los polímeros lineales y ligeramente ramificados son termoplásticos. Todos los principales termoplásticos se producen por polimerización en cadena.
Los plásticos termoestables, o termoestables, se solidifican o “cuajan” de forma irreversible cuando se calientan; no pueden volver a formarse mediante el calentamiento. Los termoestables suelen ser polímeros tridimensionales en red en los que existe un alto grado de reticulación entre las cadenas de polímeros. La reticulación restringe el movimiento de las cadenas y da lugar a un material rígido. A continuación se muestra una estructura esquelética simulada de un polímero en red con una alta densidad de reticulación.
Clasificación de los polímeros en función de los monómeros
Un polímero es una sustancia compuesta por macromoléculas[2]. Una macromolécula es una molécula de alta masa molecular relativa, cuya estructura comprende esencialmente la repetición múltiple de unidades derivadas, real o conceptualmente, de moléculas de baja masa molecular relativa[3].
es una sustancia o material formado por moléculas muy grandes, o macromoléculas, compuestas por muchas subunidades repetidas[6]. Debido a su amplio espectro de propiedades,[7] tanto los polímeros sintéticos como los naturales desempeñan papeles esenciales y ubicuos en la vida cotidiana[8] Los polímeros van desde los conocidos plásticos sintéticos, como el poliestireno, hasta los biopolímeros naturales, como el ADN y las proteínas, que son fundamentales para la estructura y la función biológicas. Los polímeros, tanto naturales como sintéticos, se crean mediante la polimerización de muchas moléculas pequeñas, conocidas como monómeros. Su masa molecular consecuentemente grande, en relación con los compuestos de moléculas pequeñas, produce unas propiedades físicas únicas que incluyen dureza, alta elasticidad, viscoelasticidad y una tendencia a formar estructuras amorfas y semicristalinas en lugar de cristales.
Clasificación de los polímeros en función de la tacticidad
¿Qué es el grado de cristalinidad? El grado de cristalinidad del polímero se define como la fracción de la muestra que es cristalina. Puede expresarse en términos de fracción de masa o de fracción de volumen. El grado de cristalinidad por fracción de volumen viene dado por Donde, Xₘ = Grado de cristalinidad por masa V = Volumen específico de la muestra Vₐ = Volumen específico del polímero totalmente amorfo Vc = Volumen específico del polímero totalmente cristalino Factores que afectan al grado de cristalinidad 1. El peso molecular Con el aumento del peso molecular del polímero, el grado de cristalinidad aumenta debido a un gran número de enredos de la cadena que restringen el crecimiento de un cristalito. 2. Simetría de la unidad de repetición Una estructura de unidad de repetición simétrica como el CH₂ facilita la formación de cristalitos. Así, aumenta el grado de cristalinidad. Por eso los copolímeros aleatorios no cristalizan porque no hay regularidad de la unidad de repetición. 3. Chai
¿Qué es el tinte de alizarina? La alizarina es un colorante rojo que tiene la fórmula química C₁₄H₈O₄ que se utiliza generalmente para teñir el algodón, la lana y la seda. La alizarina se obtenía originalmente de la raíz de una planta de rubia común llamada Rubia tinctorum. También se le conoce como Rojo de Turquía, ya que se teñía mejor en ese país, y en 1869 se convierte en el primer tinte natural en ser duplicado sintéticamente. Síntesis de la alizarina A continuación se presentan algunos métodos para la síntesis de la alizarina: 1. A partir de la antraquinona El material de partida para la síntesis de la alizarina es una antraquinona. Se puede obtener fácilmente por acilación Friedel-crafts del benceno con anhídrido ftálico. A continuación, la antraquinona se sulfona con ácido sulfúrico concentrado a alta temperatura para dar ácido antraquinona-b-sulfónico. La alizarina se obtiene por fusión del ácido antraquinona-b-sulfónico con sosa cáustica. 2. Por bromación de la antraquinona Otra síntesis es la dada por Graeve (en 1869). En este método, la antraquinona se bromea para producir dibromoantraqui
Clasificación de los polímeros wikipedia
La forma más común de clasificar los polímeros es separarlos en tres grupos: termoplásticos, termoestables y elastómeros. Los termoplásticos pueden dividirse en dos tipos: los que son cristalinos y los que son amorfos.
Las moléculas de un termoplástico se mantienen unidas por fuerzas intermoleculares relativamente débiles, de modo que el material se ablanda cuando se expone al calor y vuelve a su estado original cuando se enfría. Los polímeros termoplásticos pueden ablandarse repetidamente por calentamiento y solidificarse por enfriamiento, un proceso similar al de la fusión y el enfriamiento repetidos de los metales. La mayoría de los polímeros lineales y ligeramente ramificados son termoplásticos. Todos los principales termoplásticos se producen por polimerización en cadena.
Los plásticos termoestables, o termoestables, se solidifican o “cuajan” de forma irreversible cuando se calientan; no pueden volver a formarse mediante el calentamiento. Los termoestables suelen ser polímeros tridimensionales en red en los que existe un alto grado de reticulación entre las cadenas de polímeros. La reticulación restringe el movimiento de las cadenas y da lugar a un material rígido. A continuación se muestra una estructura esquelética simulada de un polímero en red con una alta densidad de reticulación.