Que propiedad permite alargarse a los polimeros sinteticos

Propiedades químicas de los polímeros

Este artículo necesita citas adicionales para su verificación. Por favor, ayude a mejorar este artículo añadiendo citas de fuentes fiables. El material sin fuente puede ser cuestionado y eliminado.Buscar fuentes:  “Elastómero” – noticias – periódicos – libros – scholar – JSTOR (abril de 2015) (Aprende cómo y cuándo eliminar este mensaje de la plantilla)

Un elastómero es un polímero con viscoelasticidad (es decir, tanto viscosidad como elasticidad) y con fuerzas intermoleculares débiles, generalmente un módulo de Young bajo y una tensión de rotura elevada en comparación con otros materiales.[1] El término, un portmanteau de polímero elástico,[2] se utiliza a menudo indistintamente con el de caucho, aunque se prefiere este último para referirse a los vulcanizados.[3] Cada uno de los monómeros que se enlazan para formar el polímero suele ser un compuesto de varios elementos entre carbono, hidrógeno, oxígeno y silicio. Los elastómeros son polímeros amorfos que se mantienen por encima de su temperatura de transición vítrea, por lo que es posible una considerable reconformación molecular, sin ruptura de enlaces covalentes. A temperatura ambiente, estos cauchos son, por tanto, relativamente flexibles (E ≈ 3 MPa) y deformables. Sus principales usos son las juntas, los adhesivos y las piezas flexibles moldeadas. Los ámbitos de aplicación de los distintos tipos de caucho son múltiples y abarcan segmentos tan diversos como los neumáticos, las suelas de los zapatos y los elementos de amortiguación y aislamiento. La importancia de estos cauchos puede juzgarse por el hecho de que se prevé que los ingresos mundiales aumenten a 56.000 millones de dólares en 2020[4][5].

Polímeros naturales

Antes de los primeros años de la década de 1920, los químicos dudaban de la existencia de moléculas con pesos moleculares superiores a unos pocos miles. Este punto de vista limitado fue cuestionado por Hermann Staudinger, un químico alemán con experiencia en el estudio de compuestos naturales como el caucho y la celulosa. En contraste con la racionalización predominante de estas sustancias como agregados de pequeñas moléculas, Staudinger propuso que estaban formadas por macromoléculas compuestas por 10.000 o más átomos. Formuló una estructura polimérica para el caucho, basada en una unidad repetitiva de isopreno (denominada monómero). Por sus aportaciones a la química, Staudinger recibió el Premio Nobel en 1953. Los términos polímero y monómero derivan de las raíces griegas poly (muchos), mono (uno) y meros (parte).

El reconocimiento de que las macromoléculas poliméricas constituyen muchos materiales naturales importantes fue seguido por la creación de análogos sintéticos con diversas propiedades. De hecho, las aplicaciones de estos materiales como fibras, películas flexibles, adhesivos, pinturas resistentes y sólidos resistentes pero ligeros han transformado la sociedad moderna. En los siguientes apartados se analizan algunos ejemplos importantes de estas sustancias.

Propiedades físicas de los polímeros

Un polímero es una sustancia formada por moléculas de gran masa molecular compuestas por unidades estructurales repetidas, o monómeros, conectadas por enlaces químicos covalentes. La palabra deriva del griego, πολυ, polu, “muchos”; y μέρος, meros, “parte”. Ejemplos bien conocidos de polímeros son los plásticos, el ADN y las proteínas.

Aunque el término polímero en el uso popular sugiere “plástico”, los polímeros comprenden una gran clase de materiales naturales y sintéticos con una variedad de propiedades y propósitos. Los materiales poliméricos naturales, como la goma laca y el ámbar, se utilizan desde hace siglos. Los biopolímeros, como las proteínas (por ejemplo, el pelo, la piel y parte de la estructura ósea) y los ácidos nucleicos, desempeñan un papel crucial en los procesos biológicos. Existen otros polímeros naturales, como la celulosa, que es el principal componente de la madera y el papel.

A pesar de los importantes avances en la síntesis y la caracterización de los polímeros, la comprensión adecuada de la estructura molecular de los polímeros no llegó hasta la década de 1920. Antes de eso, los científicos creían que los polímeros eran grupos de pequeñas moléculas (llamados coloides), sin pesos moleculares definidos, mantenidos juntos por una fuerza desconocida, un concepto conocido como teoría de la asociación. En 1922, Hermann Staudinger propuso que los polímeros estaban formados por largas cadenas de átomos unidas por enlaces covalentes, una idea que no obtuvo una amplia aceptación durante más de una década y por la que Staudinger acabó recibiendo el Premio Nobel. Una importante contribución a la ciencia de los polímeros sintéticos fue la del químico italiano Giulio Natta y Karl Ziegler, que obtuvo el Premio Nobel de Química en 1963 por el desarrollo del catalizador Ziegler-Natta. En el siglo transcurrido, materiales poliméricos sintéticos como el nylon, el polietileno, el teflón y la silicona han constituido la base de una floreciente industria de polímeros.

Polímeros orgánicos sintéticos

Como has aprendido, las macromoléculas biológicas son grandes moléculas, necesarias para la vida, que se construyen a partir de moléculas orgánicas más pequeñas. Hay cuatro clases principales de macromoléculas biológicas (carbohidratos, lípidos, proteínas y ácidos nucleicos). Cada una de ellas es un importante componente de la célula y desempeña una amplia gama de funciones. Combinadas, estas moléculas constituyen la mayor parte de la masa seca de una célula (recordemos que el agua constituye la mayor parte de su masa completa). Las macromoléculas biológicas son orgánicas, es decir, contienen carbono. Además, pueden contener hidrógeno, oxígeno, nitrógeno y otros elementos menores.

La mayoría de las macromoléculas están formadas por subunidades individuales, o bloques de construcción, llamados monómeros. Los monómeros se combinan entre sí mediante enlaces covalentes para formar moléculas más grandes conocidas como polímeros. Al hacerlo, los monómeros liberan moléculas de agua como subproductos. Este tipo de reacción es la síntesis por deshidratación, que significa “juntar perdiendo agua”.

En una reacción de síntesis de deshidratación ((Figura)), el hidrógeno de un monómero se combina con el grupo hidroxilo de otro monómero, liberando una molécula de agua. Al mismo tiempo, los monómeros comparten electrones y forman enlaces covalentes. A medida que se unen más monómeros, esta cadena de monómeros repetitivos forma un polímero. Los diferentes tipos de monómeros pueden combinarse en muchas configuraciones, dando lugar a un grupo diverso de macromoléculas. Incluso un mismo tipo de monómero puede combinarse de diversas maneras para formar varios polímeros diferentes. Por ejemplo, los monómeros de glucosa son los componentes del almidón, el glucógeno y la celulosa.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad